

The response of wheat grown in Andisols and Oxisols to granular and fluid phosphorus fertilizers

Daniela Montalvo, Fien Degryse, and Mike McLaughlin

Introduction

- Previous studies showed there is more bioavailable P in calcareous soils fertilized with fluid P than with granular P (Holloway et al., 2001; Lombi et al., 2005)
- Increased efficiency of fluid fertilizers was related to less precipitation of Ca-phosphates in and around the fluid P injection zone

Holloway, et al. 2001

Research question

Can fluid P enhance fertilizer efficiency on acidic strongly P-sorbing soils?

Jaramillo, 2011

Jaramillo, 2011

\rightarrow Fate of P in acidic soils

Adsorption/precipitation limit P availability

Adsorption reactions:

P strongly adsorbed hydrous oxides of Al, Fe

Precipitation reactions:

Few studies have reported Al-and Fe phosphate precipitates in soils

Behaviour P fertilizers: acidic soils

Montalvo et al. 2014. Soil Sci. Soc. Am. J:78:214-224

- Greater diffusion but not lability from fluid P fertilizers in acidic Al/Fe oxides-rich soils
- Greater diffusion and lability in calcareous soil because of reduced Ca-P precipitation

Residual MAP composition: acid soils

- ~ 10% of initial P remained in granule
- Al, Fe did not significantly increase in the granule (no movement)
- Ca content increased in residual granule incubated in calcareous soil

Elemental comp. (mg granule ⁻¹)						
	Р	Са	Al	Fe		
Unincubated	9.4a	0.2b	0.4a	0.6ns		
And. (Chile)	0.9cd	0.2b	0.4a	0.7		
And. (North)	0.8d	0.2b	0.4a	0.5		
Ox. (Green.)	1.0bc	0.1c	0.4a	0.6		
Ox .(Redv.)	0.9cd	0.2b	0.3b	0.6		
Calc. (Pt K.)	1.2b	0.7a	0.4a	0.6		

Montalvo et al. 2014. Soil Sci. Soc. Am. J:78:214-224

In acidic and Al/Fe oxide-rich soils the application of fluid P will provide no agronomic benefit over granular P sources

To evaluate the effectiveness of fluid and granular P fertilizers for wheat grown in acidic strongly P-sorbing soils under glasshouse conditions

Materials and Methods

• Soils (5):

Andisols (Chile and North, NZ)

Oxisols (Greenwood and Redvale, AUS)

Calcareous Inceptisol (Pt Kenny, AUS)

• Fertilizers (4):

```
Granular: TSP (0-20-0), MAP (10-22-0), DAP (18-20-0)
Fluid: flMAP (12-26-0)
Control (nil P)
```

Selected soil properties

Soil	рН (Н ₂ О)	Al _{ox}	Fe _{ox}	CaCO ₃	C _{DGT}	Ca ²⁺
		g	≺g ⁻¹	%	µg L⁻¹	cmol _c kg ⁻¹
Chile	5.3	43	17	b.d.l.	4	1.5
North-NZ	5.7	42	8	b.d.l.	11	6.6
Greenwood	5.9	17	4	b.d.l.	6	4.0
Redvale	6.4	2	2	b.d.l.	2	7.4
Pt Kenny	8.7	0.2	0.1	28	33	26.6

b.d.l.: below detection limit

Al_{ox}, Fe_{ox}: oxalate extractable Al and Fe

 C_{DGT} : Diffusive gradient in thin-film concentration, critical conc. 60 µg L⁻¹ (Mason, 2010) Ca²⁺: NH₄Cl exchangeable Ca

Materials and Methods

- Basal macro & micro nutrients
- Soils spiked 500 kBq kg^{-1 33}P
- Fertilizer rate: 150 mg kg⁻¹ (And. & Ox.)

40 mg kg⁻¹ (Calcareous Incep.)

- Wheat plants harvested after 6 weeks
- Shoots digested and analysed for total P and ³³P activity

Materials and Methods

Isotopic dilution (indirect labeling) to determine % P in the plant that derived from fertilizer

$$\%Pdff = 100 \times \left[1 - \left(\frac{{}^{33}P_{shoot_{f}}}{SA_{Pdfsoil} \times {}^{31}P_{shoot_{f}}}\right)\right] - \%Pdfseed_{f}$$
$$SA_{Pdfsoil} = \frac{{}^{33}P_{shoot_{ctrl}}}{{}^{31}P_{shoot_{ctrl}} - Pdfseed_{ctrl}}$$

Plant response: shoot dry weight

- And. & Ox.: N.S. between fIMAP and MAP
- Calc.: fIMAP produced 31% more dry matter than MAP

Slide 12

Plant response to fertilizers

TSP: Ca nutrition effect

TSP: poor performance likely Ca-P precipitation

Slide 13

→ Plant response to fertilizers

Slide 14

Plant response: shoot P

Plant response to fertilizer application

Plant P uptake: Andisols & Oxisols

- And. & Ox.: Soil P contribution to the shoots is minimal
- Calc.: Soil P contribution to the shoots ~58% average

Fertilizer	Chile	North	Greenwood	Redvale	Pt Kenny
TSP	88a	80NS	81NS	65b	12c
ΜΑΡ	23c	79	85	79a	30b
DAP	54b	73	84	88a	20c
fIMAP	41bc	78	86	85a	49a

- And. & Ox.: fIMAP = MAP
- Calc.: fIMAP > MAP

Summary

- No agronomic benefits in Andisols and Oxisols from the application of fluid P fertilizers
- Calcium phosphate sources (e.g. TSP) should be avoided in soils with near neutral to basic pH to avoid opportunities for Ca-P precipitation
- In Andisols and Oxisols most of crop P derived from fertilizer P, which highlights the importance of fertilizer application

Acknowledgments

- Collection of soil in Australia, New Zealand, and Chile- Drs Mike Bell, Leo Condron, and Carlos Michiels
- Technical staff- Bogumila Tomczak, Colin Rivers, and Ashleigh Broadbent
- Funding

Grains Research & Development Corporation

SILVID FERTILIZER FOUNDATION