Leaf Wetting and Uptake of Fluid Foliar P Fertilizers for Wheat

Courtney Peirce, Craig Priest, Evelina Facelli, Therese McBeath, Victoria Fernández and Mike McLaughlin

GRADC Grains Research & Development Corporation

- Fertilizer P is a very high input cost and represents a high financial risk to growers in regions with variable seasonal rainfall
- Tactical application as a "top-up" of P in good seasons on marginally deficient soils
- Higher efficiency of fertilizer P uptake through the foliar route
 - Limit to the total amount of P that can be supplied

Major Factors Affecting Foliar Fertilizer Efficacy

Plant-related factors

- Leaf wettability
- Leaf surface morphology

Formulation factors

- Adjuvants
- pH of formulation
- Form of P

Environmental factors

- Temperature
- Wind
- Relative humidity

Plant-Related Factors

Morphology and foliar P uptake of:

- Adaxial (upper) vs. abaxial (lower) leaf sides
- Varying levels of P nutrition

Measured by:

- Impressions of leaves using cyanoacrylate adhesive
- Scanning Electron Microscopy of fresh and fixed leaves
- Leaf wettability by static advancing and receding contact angles
- Tracer studies using ³²P and ³³P to give foliar-applied fertilizers a unique fingerprint

Foliar P Uptake Methods - Leaf Side

- 2 foliar application timings
 - ear emergence 39DAS and mid-anthesis 49DAS
- 3 ³²P and ³³P labelled fertiliser rates (0.6, 1 and 2.6 kg P/ha)
 - ▶ ³³P applied to lower side
 - ▶ ³²P applied to upper side
- Leaves not washed after treatment but translocation reported as a % of foliar P recovered in the plant
- Plants harvested during maturity

Wheat Leaf Scanning Electron Microscope Images -leaf side

Upper side

Lower side

Wheat Leaf Morphology – Leaf Side

	Upper leaf side	Lower leaf side	Trichomes increase			
Stomata mm ⁻²	51±6 a	39±4 b	and decrease leaf wettability			
Trichomes mm ⁻²	45 ± 22 a	5±4 b				
Upper leaf side LI 700 [®] (0.3% w v ⁻¹) Contact Angle 113°			Lower leaf side 1 700 ® (0.3% w v ⁻¹) Contact Angle 80°			

LSD (P ≤0.05) side effect: stomata 2, trichomes 6

Foliar P Translocation to Plant Parts – Leaf Side

Effect on P Nutrition on Leaf Surface Properties

Ρ		Stomata		Trichome			Contact angle		
treatment		/mm ²		/mm²			of water(°)		
(kg	P/ha)	Upper	Lower	Upper	Lower		Upper	Lower
	24		77 c	59 ^c	59°	7 c		143.2 ^b	117.7 ^a
	8		55 ^b	39 ^b	41 ^b	3 b		139.3 ^{ab}	112.8ª
	0		36 ^a	29 ^a	5ª 🗸	0 ^a	,	123.2ª	103.2ª

P deficiency **decreases** the leaf surface hydrophobicity

Fernández et al. (2014) "Effect of wheat phosphorus status on leaf surface properties and permeability to foliarapplied phosphorus" Plant and Soil (in press)

Effect on P Nutrition on Foliar P Absorption

P treatment (kg P/ha)	Radioactivit Foliar P Absorption (%)	ty recovered Foliar P translocated from treated leaf (%)	
24	33ª	34 ^a	
8	20 ^b	35 ^a	
0	0 c	0 ^b	

7 /

5.00 kV 149 µm 2 000 x 11.3 mm

Summary of Previous Experiments

- Different surface morphology between leaf sides
 - Upper leaf side less wettable than lower leaf side
 - Higher foliar uptake from adaxial leaf side
 - Implication for crops with horizontal leaf orientation
- P Nutrition affects morphology and wettability of leaves
 - Deficient leaves have less trichomes and stomata
 - Severely deficient leaves are unable to take up foliar-applied
 P

Plant x Formulation Mechanism

- Foliar P in the form of orthophosphate
 - Charged anion but leaf surface hydrophobic
 - Phosphoric acid more penetrative than ammonium phosphates

Use of adjuvants

- Surfactants to increase retention on leaves (spreading and lowering contact angles)
- Humectants to keep nutrients in solution longer

О

Experiment Protocol – Adjuvant Effect

- Contact angle measurements of water and fertilizers on wheat leaves
 - GS early booting to early ear emergence
 - Concentrations ranging from 0.01 0.3 % w v⁻¹
 - Adjuvants:
 - Agral[®] (Active ingredient: 63% nonyl phenol ethylene oxide condensate)
 - ▶ LI 700[®] (Active ingredients: 35% w v⁻¹ soyal phospholipids, 35% w v⁻¹ propionic acid)
 - ► Genapol[®] X-080 (Polyethylene glycol monoalkyl ether)
- Short-term foliar uptake of phosphoric acid + adjuvant
 - ▶ 1.85 % P w v⁻¹ applied at mid-late booting
 - ³³P tracer added to fertilizers
 - Harvested 7 days after application

Static Contact Angles – Adjuvant Effect

Water	Contact Angle (°)			
Advancing	159 ± 6			
Receding	149 ± 10			

Wheat leaf surface is superhydrophobic due to high advancing contact angle and small hysteresis

Advancing contact angle of water

Genapol [®] X-080 at 0.05 % w v⁻¹

Adjuvant Effect on Leaf Wettability

Short-term Uptake of Foliar P -with Adjuvants

- 94% of foliar applied P absorbed by the leaves for all treatments
 - > 3% washed off the leaves
 - <3% not recovered</p>
- Plant separated into parts after washing to measure translocation from treated area
 - Treated leaf tip and base
 - Ear (from main stem)
 - The rest of the main stem
 - Tillers

Treated leaf

Short-term Translocation of Foliar P

-with Adjuvants

Summary– Effect of Adjuvant

Wheat leaves are superhydrophobic

- Contact angle of fertilizers vary with different adjuvants
- Short-term uptake of P does not vary for adjuvants with different contact angles

Practical Implications

- Without use of adjuvants, wheat leaves are very difficult to wet resulting in loss of foliar fertilizer to soil
- The foliar uptake of P is high regardless of the adjuvant used
- The effect of time-to-drying vs. leaf coverage by fertilizer should be further investigated
 - Possible trade-off helps explain the results from this study

Any Questions?

- Acknowledgements
- Funding: Fluid Fertilizer Foundation, GRDC, CSIRO Flagship Collaboration Fund
- Adelaide Microscopy at North Terrace and Waite Campus
- Technical assistance: Bogumila Tomczak, Colin Rivers, Pontus Forsberg, Paula Guzman

GRDC Grains Research & Development Corporation