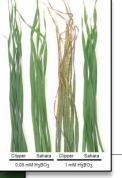


Boron fertilizers: use, mobility in soils and uptake by plants

Fien Degryse

Fertilizer Technology Research Centre

adelaide.edu.au

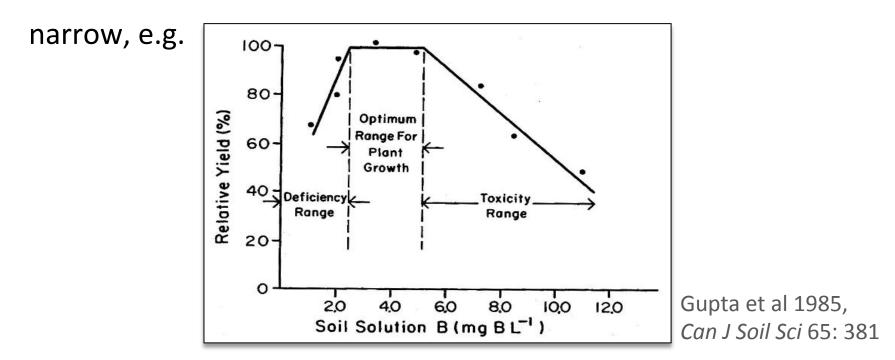

seek LIGHT

Boron toxicity and deficiency in plants

- Boron is an essential micronutrient required for several functions in plants, particularly for cell walls and for reproduction (flowering)
- Uptake by plants is passive and unregulated, so toxicity can easily occur
- B is relatively immobile in most plant species, so crops are adversely affected by even short-term deficiencies

B toxicity

www.acpfg.com.au


www.extension.umn.edu

www.agric.wa.gov.au

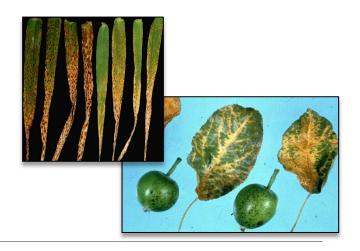
Boron toxicity and deficiency in plants

The window between deficiency and toxicity for B is very

 The optimal range in soil varies by crop, but is roughly 0.5-5 mg/kg hot water-extractable boron for most species

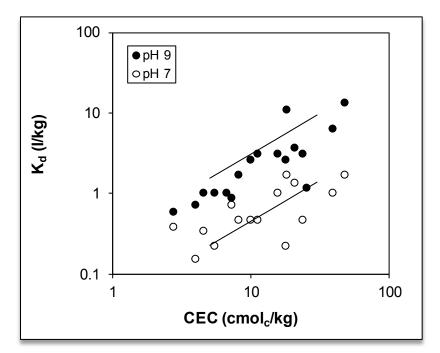
Boron toxicity and deficiency in plants

Species sensitive to B deficiency: legumes, *Brassica*, fruit trees

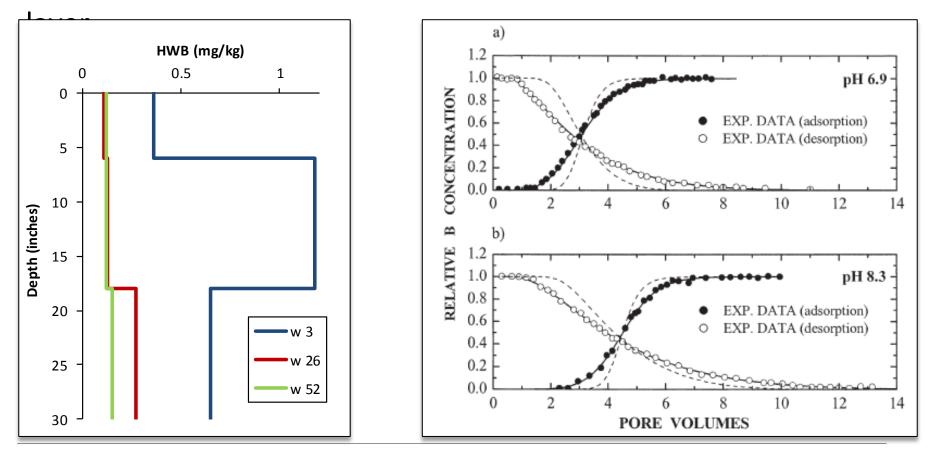

Apium graveolens var. dulce	Celery	Eucalyptus spp.	Eucalypts
Arachis hypogaea	Groundnut	Gossypium spp.	Cotton
Beta vulgaris	Sugar beet	Helianthus annuus	Sunflower
Brassica spp.	Brassica	Malus domestica	Apple
B. rutabaga	Swede	Medicago sativa	Lucerne
<i>Coffea</i> spp.	Coffee	Olea europaea	Olive
Daucus carota	Carrot	Pinus spp.	Pines
Elaeis guineensis	Oil palm	Vitis vinifera	Grape

Shorrocks 1997, Plant Soil 193: 121

- Species sensitive to B toxicity:
 - Several cereal species (barley, wheat)

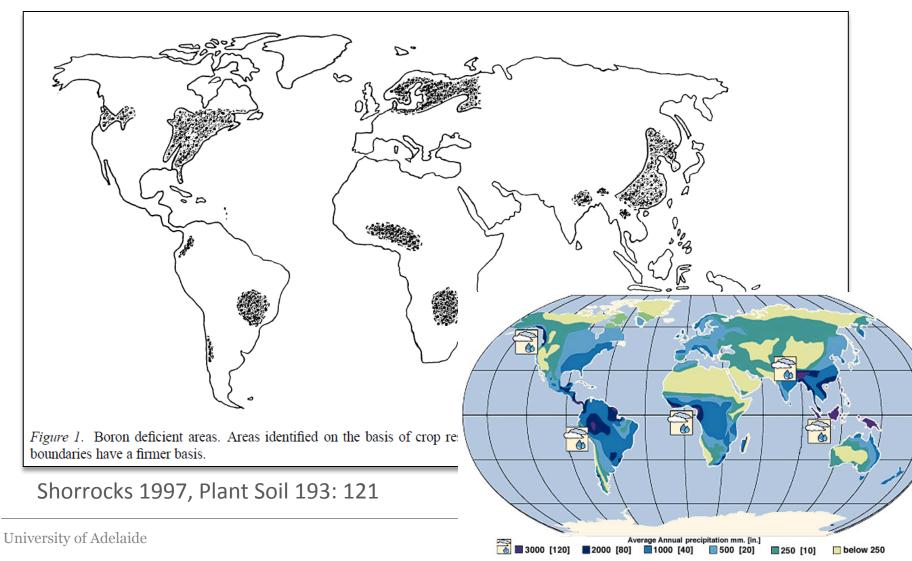

(due to low pectin content?)

Stone and pome fruits


- Total B concentrations in soil depend on parent material and the degree of weathering, with natural background concentrations usually ranging from 2 to 100 mg/kg (average ~ 20 mg/kg; Power & Woods 1997)
- Boron is never found as a single element and is usually found combined with oxygen as borates
- Boron may also be tightly bound in silicate minerals to produce very insoluble minerals, e.g. clay minerals or tourmalines
- Adsorption on oxides and association with organic matter occurs

- Soluble B in soil exists as a neutral species, H₃BO₃, in most soils or also as B(OH)₄⁻ in high pH soils (pK_a=9.2)
- The adsorption of B in soils is weak, though generally higher in high pH soils (pH>8)

Data from Goldberg et al 2000, SSSAJ 64: 1356


- The low retention makes B vulnerable to leaching
- \Rightarrow Excess rainfall can result in loss of applied B from the top

Data from Winsor 1951, Soil Sci 71: 91

Communar & Keren 2005, SSSAJ 69: 311

Areas where B deficiency is most likely to occur

- Toxic B levels are most likely to occur in dry areas, particularly in:
 - soils inherently high in B
 - soils irrigated with B-rich irrigation water
- High B is often found in association with salinity problems
- The highest B concentrations are often found at depth (>20 cm), so topsoil sampling may not reveal the issue
- "Detoxifying" the soil through excess irrigation is often not practical or economical, so selecting/breeding crop cultion with tolerance is usually the only practical approach to increase or maintain yields on high-B soils

Boron in soil and plants - Summary

- Boron is highly mobile in soil (if not occluded in minerals/ organic matter)
- Boron deficiency is most commonly found in humid regions, as leaching removes plant-available B
- There is a narrow range between B deficiency and toxicity, with optimal soil concentrations generally between 0.5-5 mg/ kg hot-water extractable B
- The sensitivity to B deficiency or toxicity is plant species dependent

- Boron is primarily obtained from mined B minerals, located mostly in arid regions of Turkey and the USA, and also in Argentina, Chile, Russia, China, and Peru
- Approximately 70% of the world supply comes from two corporate organizations – Eti Mine Works (Turkey) and Rio Tinto (US Borax)
- It is estimated that Turkey has 72% of the world's B reserves

Soluble borates/boric acid (borax and refined borates)

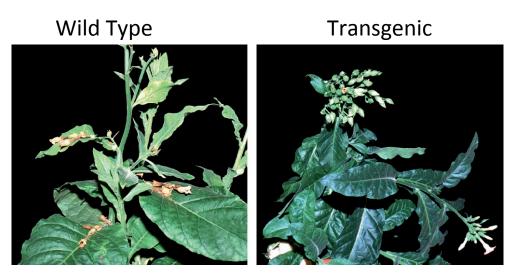
Compound (Common/commercial name)	Formula	% B
Disodium tetraborate decahydrate (Borax, tincal)	$Na_2B_4O_7.10H_2O$	11.3
Disodium tetraborate pentahydrate (Fertibor, Granubor)	$Na_2B_4O_7.5H_2O$	15.2
Disodium octaborate tetrahydrate (Solubor, Granubor)	$Na_2B_8O_{13}.4H_2O$	20.9
Anhydrous borax (Dehybor)	$Na_2B_4O_7$	21.5
Boric acid	H ₃ BO ₃	17.5

Crushed or refined ores

Compound	Formula	% B
Colemanite	$Ca_2B_6O_{11}.5H_2O$	15.8
Ulexite	NaCaB ₅ O ₉ .8H ₂ O	13.3

University of Adelaide

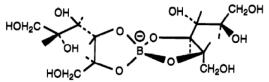
Other sparingly soluble compounds


Compound	Formula	% B
Boron frits	(boric oxide glass)	2-11
Boron phosphate	BPO ₄	10.2

- Boron frits are produced by melting silicates with borates and have very low solubility
- Boron phosphate is synthesized from boric acid and phosphoric acid and its solubility depends on the temperature of synthesis (Abat et al. 2014)

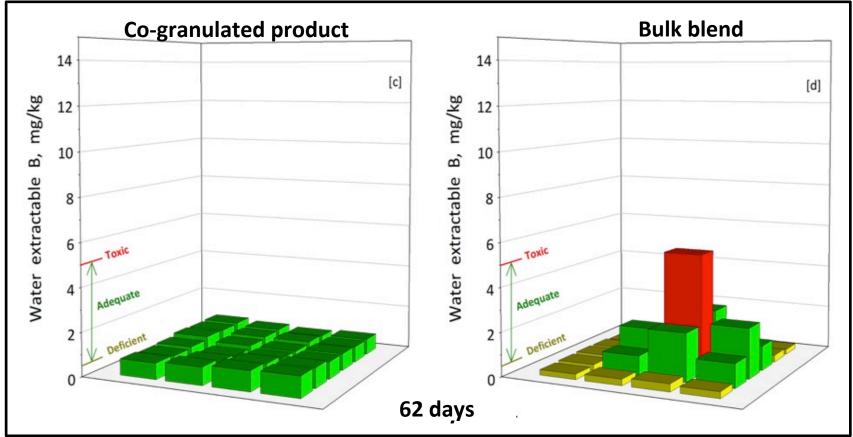
Boron fertilization

- Recommended rates depend on B crop requirements and generally range from 0.25 to 3 kg/ha
- Methods of application:
 - Soil application: mostly broadcast, banding not recommended because of toxicity risk
 - Foliar for selected crops


Boron fertilization - Foliar

Species	Basal	Middle	Apical	Remarks
Pecan	303	119	30	B-immobile
Tomato	721	318	94	B-immobile
Strawberry	512	176	68	B-immobile
Walnut	304	127	48	B-immobile
Apple	50	56	70	B-mobile
Apricot	45	60	81	B-mobile
Pear	42	57	62	B-mobile
Celery	32	49	104	B-mobile
Grape	74	55	88	B-mobile
Loquat	72	101	162	B-mobile
Olive	42	51	56	B-mobile
Peach	53	57	208	B-mobile
Pomegranate	21	20	111	B-mobile

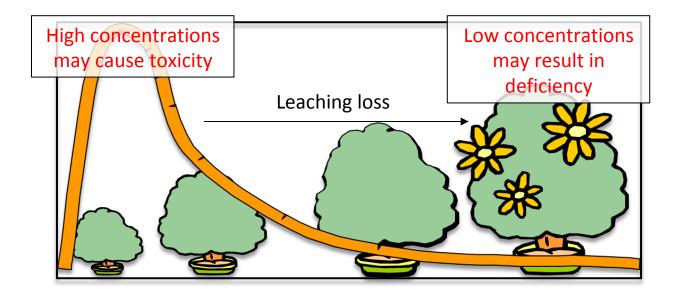
Brown & Hu 1998, Better Crops 82:28


- Boron is phloem-mobile in sorbitol-rich species, e.g. several
 fruit crops
- In most species, B is not phloem-mobile and hence foliar fertilization is not effective

Boron fertilization

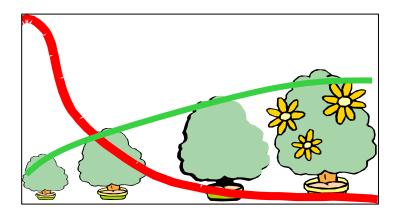
- Recommended rates depend on B crop requirements and generally range from 0.25-3 kg/ha
- Methods of application:
 - Soil application: mostly broadcast, banding not recommended because of toxicity risk
 - Foliar for selected crops
- Types of soil-applied fertilizer:
 - Granular fertilizer bulk blended with granular NPK sources
 - Boronated NPK fertilizer

Boron fertilization – Bulk blend vs boronated



da Silva et al, in preparation

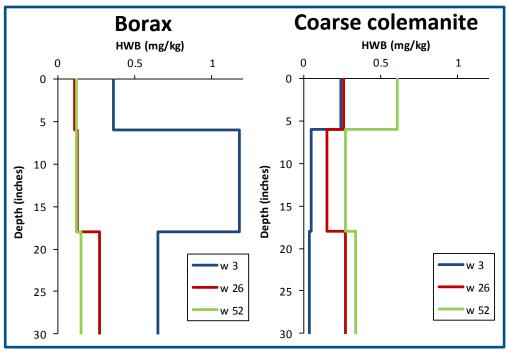
 Bulk blending results in poorer field distribution and hence higher risk of toxicity/deficiency than co-granulated fertilizers


Issues with soluble B fertilizer

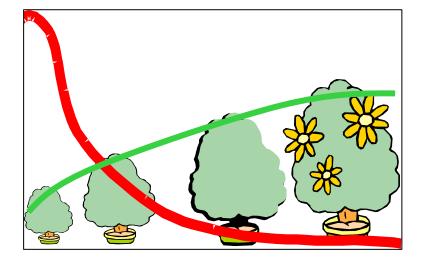
- Soluble B may cause toxicity initially with sensitive crops
- Retention of B in most soils is negligible, so B leaches easily, which may result in deficiency later in the season

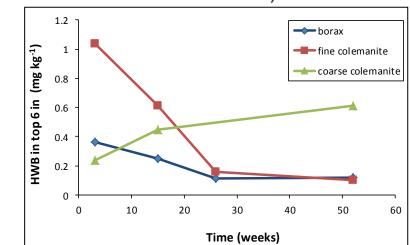
Slow release fertilizers

- Slow release fertilizer reduce the risk of both leaching losses (possibly resulting in deficiency) and of seedling toxicity
- The release should be slow enough to protect against leaching and harmful concentrations, but fast enough to supply the nutrients within a reasonable timeframe



Slow release fertilizers – Reduced leaching


Less leaching for coarse


colemanite

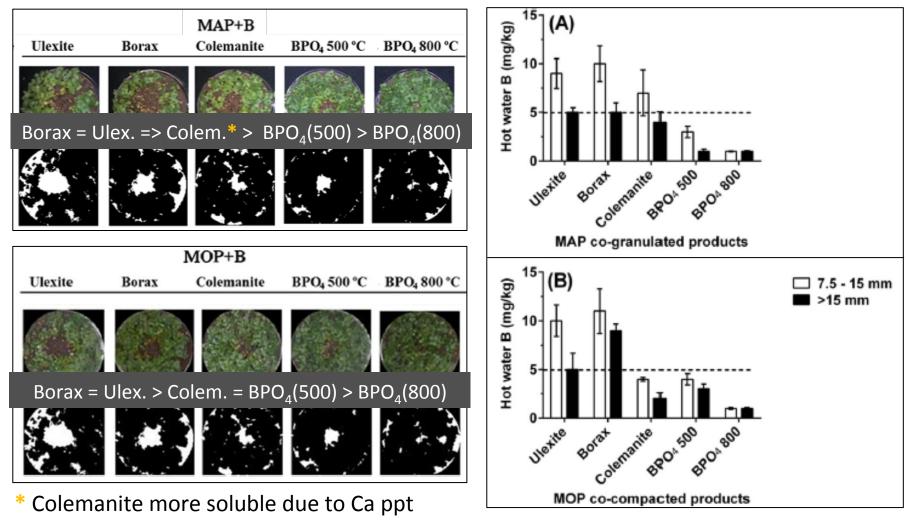
⇒ Available B maintained at optimal levels over longer period

Winsor 1951, Soil Sci 71:99

Seedling toxicity test (Abat et al. 2015)

- Petri dish filled with soil
- Fertilizer granule (MAP or MOP with 2% B) in centre
- Seeds germinated under controlled conditions (23/15°C, day/ night)
- Pictures taken 7 and 11 days after germination and processed using imaging analysis software (GIMP)

Fertiliser granule (MAP: 30 mg, MOP: 40 mg)


10 g moistened soil and 1 g seeds

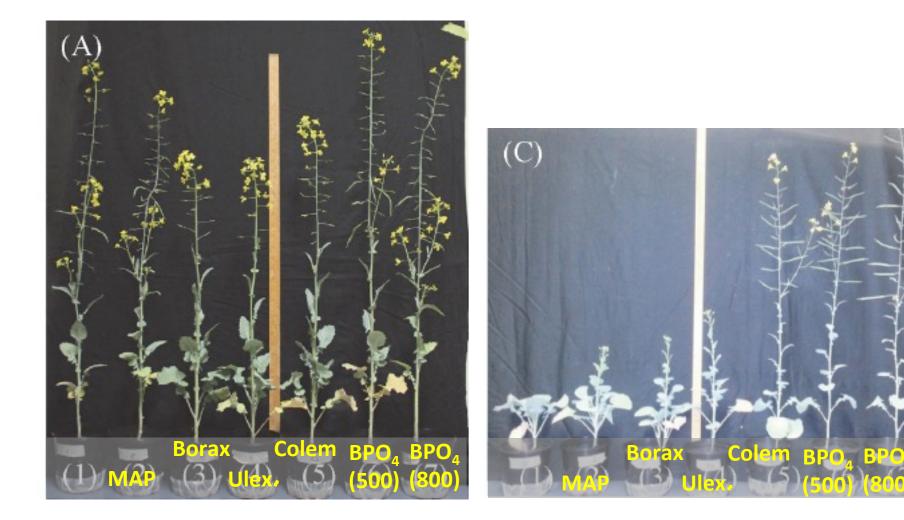
50 g moistened soil

Slow release fertilizers – Reduced toxicity

Toxicity and HWB concentrations around MAP/MOP+2% B granules

(Ca phosphates) and lower pH around MAP

Abat et al. 2015, Plant Soil 391:153


Pot trial (Abat et al. 2015)

- Sandy acid soil with low hot-water B concentration (0.2 mg/ kg)
- Five B sources: borax, ulexite, colemanite, BPO₄(500) and BPO₄(800) co-granulated with MAP at 1% B
- Canola grown for 12 weeks in 1-kg pots
- After 3 months, leaching with 1400 ml of water, and second canola crop (12 weeks) grown
- Yield and tissue analysis

First crop

Second crop

Abat et al. 2015, SSSAJ 79: 97

University of Adelaide

	First crop							
		Yield			Concentration			
Treatment	Shoot	Seed	Root	Shoot	Seed	Root		
		– g plant ^{–1} –			— mg <mark>B</mark> kg ⁻¹			
Control	3.60 c†	0.169 ns‡	0.384 a	24 d	18 d	12 cd		
MAP¶	5.06 a	0.192	0.251 b	29 d	21 d	11 d		
Borax	4.33 bc	0.074	0.224 b	97 a	72 a	20 ab		
Ulexite	4.10 bc	0.081	0.202 b	108 a	68 ab	23 a		
Colemanite	4.72 ab	0.163	0.205 b	101 a	48 bc	18 abc		
ВРО ₄ 500°С	4.77 ab	0.189	0.195 b	78 b	27 cd	18 ab		
BPO ₄ 800°C	5.39 a	0.207	0.215 b	59 c	23 d	16 bcd		

 With most soluble sources, toxicity symptoms and yield reduction in first crop

University of Adelaide

Abat et al. 2015, SSSAJ 79: 97

	First crop					Second crop				
	Yield			Concentration			Yield		Concentration	
Treatment	Shoot	Seed	Root	Shoot	Seed	Root	Shoot	Seed	Shoot	Seed
	g plant ⁻¹			mg B kg ⁻¹		g plant ^{_1}		— mg B kg ⁻¹ —		
Control	3.60 c†	0.169 ns‡	0.384 a	24 d	18 d	12 cd	2.38 b	0.0	14 d	NA§
MAP¶	5.06 a	0.192	0.251 b	29 d	21 d	11 d	3.10 a	0.0	12 d	NA
Borax	4.33 bc	0.074	0.224 b	97 a	72 a	20 ab	2.77 ab	0.003	15 cd	3.60 ns
Ulexite	4.10 bc	0.081	0.202 b	108 a	68 ab	23 a	2.46 b	0.067	20 cd	5.50
Colemanite	4.72 ab	0.163	0.205 b	101 a	48 bc	18 abc	2.59 ab	0.097	29 b	9.20
ВРО ₄ 500°С	4.77 ab	0.189	0.195 b	78 b	27 cd	18 ab	2.63 ab	0.115	40 a	7.86
BPO ₄ 800°C	5.39 a	0.207	0.215 b	59 c	23 d	16 bcd	2.71 ab	0.091	24 bc	5.72

- With most soluble sources, toxicity symptoms and yield reduction in first crop
- With most soluble sources (borax and ulexite), deficiency symptoms in second crop

Conclusions

- Boron is an uncharged ion and is not strongly retained in soils
- Boron is therefore very mobile and deficiencies are most common in high rainfall environments, especially on sandy soils
- The 'window' between deficiency and toxicity is narrow for B, so care is needed in fertilizer formulation and placement to avoid B toxicity
- Only small amounts of B are required to alleviate deficiency (~0.5-3 kg/ha)

Conclusions

- Due to poor spatial distribution of B, bulk blends containing B salts are less effective than co-granulated products
- The use of highly soluble B sources can result in leaching losses in high rainfall environments, and also poses a higher risk of toxicity
- Slow release sources have most potential to supply adequate
 B throughout the entire plant cycle or multiple crop cycles

Acknowledgments

FERTILISER TECHNOLOGY RESEARCH CENTRE Mike McLaughlin Margaret Abat Roslyn Baird Rodrigo Coqui da Silva Bogumila Tomczak Colin Rivers Ashleigh Broadbent

Organizers (Dr Cakmak) and supporting institutions (Boren)

www.adelaide.edu.au/fertiliser

