Honours information session

Thursday May 6 2.30pm

Join us for a short online session to discover why honours could be the right choice for you.

Register for webinar

Synthetic biology applications of enzymes

Synthetic biology involves the design and construction of new biological devices, and systems, as well as the redesign of existing, natural biological systems for useful purposes.

Honours projects in this area will use approaches to generate enzyme catalyst based systems to develop greener and sustainable processes for the production of useful and high value chemicals.

One project will involve developing and optimising systems which replace expensive biological cofactors with cheaper alternatives. Others include designing biological nanocompartments in order to create reaction vessels containing enzymes of interest.

Project aims

To adapt enzymes that naturally utilise molecular oxygen as an oxidant but require expensive cofactors, which limit their potential use, to proceed with hydrogen peroxide (H2O2) as an alternative. To design biological vessels which contain these enzyme to enhance the lifetime of the biocatalyst and enable easier handling. These are attractive options for larger scale oxidation reactions to develop biocatalysts for use in synthetic biology.

Techniques used

In the laboratory, honours students employ a number of chemical and/or biochemical techniques. Organic and analytical chemistry techniques are used for the production, isolation and identification of hydroxylated organics from enzymatic turnovers and whole-cell reactions via HPLC, GC, GC-MS and NMR.

Genome analysis and molecular biology (e.g. gene cloning, rational mutagenesis and directed evolution), protein production using Escherichia coli and protein purification are performed.

The inorganic metal centres of the enzymes and the electron transfer proteins are analysed using UV/Vis and other spectroscopies. Structural studies (X-ray crystallography) of the proteins are undertaken.

The structures provide important information on how the enzymes function and the protein-protein interactions which control electron transfer. Projects can therefore be designed to be compatible for those with an interest in chemical synthesis/analysis or in the biochemical aspects of the work.



Tagged in Honours projects - Chemistry, Honours projects - Molecular and biomedical science, Honours projects - Stephen Bell